Semi-supervised Gender Classification with Joint Textual and Social Modeling

نویسندگان

  • Shoushan Li
  • Bin Dai
  • Zhengxian Gong
  • Guodong Zhou
چکیده

In gender classification, labeled data is often limited while unlabeled data is ample. This motivates semi-supervised learning for gender classification to improve the performance by exploring the knowledge in both labeled and unlabeled data. In this paper, we propose a semi-supervised approach to gender classification by leveraging textual features and a specific kind of indirect links among the users which we call “same-interest” links. Specifically, we propose a factor graph, namely Textual and Social Factor Graph (TSFG), to model both the textual and the “same-interest” link information. Empirical studies demonstrate the effectiveness of the proposed approach to semi-supervised gender classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Joint Modeling of News Reader's and Comment Writer's Emotions

Emotion classification can be generally done from both the writer’s and reader’s perspectives. In this study, we find that two foundational tasks in emotion classification, i.e., reader’s emotion classification on the news and writer’s emotion classification on the comments, are strongly related to each other in terms of coarse-grained emotion categories, i.e., negative and positive. On the bas...

متن کامل

User Classification with Multiple Textual Perspectives

Textual information is of critical importance for automatic user classification in social media. However, most previous studies model textual features in a single perspective while the text in a user homepage typically possesses different styles of text, such as original message and comment from others. In this paper, we propose a novel approach, namely ensemble LSTM, to user classification by ...

متن کامل

Semi-Supervised Classification of Non-Functional Requirements: An Empirical Analysis

The early detection and classification of non-functional requirements (NFRs) is not only a hard and time consuming process, but also crucial in the evaluation of architectural alternatives starting from initial design decisions. In this paper, we propose a recommender system based on a semi-supervised learning approach for assisting analysts in the detection and classification of NFRs from text...

متن کامل

Redalyc.Semi-Supervised Classification of Non-Functional Requirements: An Empirical Analysis

The early detection and classification of non-functional requirements (NFRs) is not only a hard and time consuming process, but also crucial in the evaluation of architectural alternatives starting from initial design decisions. In this paper, we propose a recommender system based on a semi-supervised learning approach for assisting analysts in the detection and classification of NFRs from text...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016